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Mathematical Challenge February 2018 
Value-at-Risk Estimation for long time horizons 
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Description:  

In the aftermath of the financial crisis of 2008, the financial institutions had to revise their risk management 

policies and be compliant to stricter regulations. Typically, banks have to provide sufficient capital to cover 

several sources of risk. In light of the Basel III requirements, the regulatory capital is commonly estimated by 

the 99% Value-at-Risk (VaR) of the portfolio simulated P&L at time horizons under which the market positions 

can be hedged and liquidated. Such time horizons are short and a large panel of models on the returns 

distribution is available (assuming a parametric model or based on empirical data) to generate the risk 

scenarios necessary to the VaR calculation. The regulators require in addition to compute the so-called 

economic capital to cover the risk on longer time horizons that can be one or several years. The latter is 

achieved, by using one of the following approaches: 

1. Generate the risk factor scenarios over the long time horizon and evaluate the portfolio. 

2. Generate the risk factor scenarios for a horizon of one day1, compute the corresponding VaR and 

then rescale it to longer time horizons. 

The straightforward risk factor scenario generation in Approach 1 admits some limitations. First, it is assuming 

that the bank’s positions are constant over the entire time horizon, which is definitely not the case in reality 

with regular rebalancing of the portfolio. Then, the amount of data to capture several economic cycles is 

limited making the non-parametric models non-applicable and the Monte-Carlo simulations have to rely on 

models where the parameters have to be wisely set. Due to such limitations, many practitioners prefer to use 

Approach 2 aiming to estimate the unknown function  ℎ(. ) such that 𝑉𝑎𝑅𝛼(𝑇
′) = ℎ(𝑉𝑎𝑅𝛼(𝑇)), for 𝑇′ ≠ 𝑇. 

Under the assumption of normal distribution of the returns, the VaR scales up with the so-called Square-

Root-of-Time Rule (SRTR), i.e. 

                                                           
1 In [2], it is suggested to use higher horizons since the returns are dependent due to the volatility clustering.  
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𝑉𝑎𝑅𝛼(𝑇
′) = √

𝑇′

𝑇
⋅ 𝑉𝑎𝑅𝛼(𝑇). 

Unfortunately, the SRTR cannot be easily applicable to any kind of distribution. Typically, Danielsson studied 

the effect of the SRTR in the case of returns following a jump diffusion process and highlighted a downward 

bias in risk estimation (see [3]).  

 

A VaR-scaling methodology is presented in [1], where the returns are assumed to be i.i.d. Student T and 

Variance-Gamma without drift. The VaR scaling is presented as a convolution problem, using the fact the 

Probability Density Function (PDF) of the sum of two i.i.d. random variables is given by: 

𝑝(𝑦) = ∫ 𝑝(𝑦 − 𝑥1(Δ𝑡)𝑝(𝑥1(Δ𝑡))𝑑𝑥1(Δ𝑡)
+∞

−∞

, 

where 𝑦 = 𝑥1(Δ𝑡) + 𝑥2(Δ𝑡), 𝑥𝑖(Δ𝑡) denoting the returns of the portfolio for the time interval Δ𝑡 = 𝑡𝑖 − 𝑡𝑖−1. To 

get the PDF of P&L with a time horizon 𝑇 = 𝑛Δ𝑡, we need to apply the convolution 𝑛 times. In case of the 

normal distribution for the one-day returns, the convolution leads to the normal distribution with suitably 

rescaled mean and variance. The main findings of [1] are that if the short-term returns distribution has an 

exponential decay, then the SRTR is applicable, as the long-term returns distribution converges quickly to 

the normal distribution. However, if the short-term returns distribution has a power law decay, the SRTR is 

only applicable only if the tails are not too heavy. More precisely, the SRTR is applicable to the Variance-

Gamma distribution according to the Central Limit Theorem (CLT). However, the Student T distribution 

converges to the normal distribution only for a specific range of 𝜈 which should be above a critical value 

determined as 𝜈∗ = 3.41. Below this one, the CLT convergence is not ensured and the convolution has to be 

explicitly calculated. 

 

Questions: 

 Q1: Using the formulations’ step similar to the ones introduced in [1], explain the scaling properties 
assuming that the short-term returns are i.i.d. distributed with zero drift according to the Generalized Pareto 
Distribution (GPD). Can the convolution explained in [1] be simplified in the case of the GPD? 

 Q2: The VaR scaling procedure as a convolution problem relies on the independence of returns. Assuming 
a specific correlation structure between returns, is it possible to derive a semi-analytical scaling function 
for the VaR?  

 Q3: For very long term risk horizons, the lack of data makes the backtesting of such methodology 
impossible. However in case of the availability of intraday data, make a study of backtesting performance 
of intraday data, rescaled daily, rescaled weekly and corresponding daily and weekly data. Do the rescaled 
daily/weekly and standard daily/weekly VaR highly differ? 

 

We look forward to your opinions and insights. 
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